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Using a model of local interactions an asymptotic theory is constructed for the plane motion of a slender sharpened body of 
revolution when it is fully immersed in a dense medium and there is no flow separation at the lateral surface. Assuming that at 
the initial instant of time the dynamic component of the normal stress is much greater than the tensile strength, the domain of 
variation of the governing parameters corresponding to asymptotically stable types of motion is found for translational motion 
of a body at zero angle of attack. 0 1998 Elsevier Science Ltd. All rights reserved. 

The difficulties in computing the motion of a rigid body in a dense medium, such as various types of 
soil, are caused, in particular, by the unsteady-state nature of the problem, the variation of the velocity 
of the centre of mass of the body over a wide range compared with the characteristic velocity of 
propagation of perturbations in the medium, the possibility of modes of motion with flow separation 
at the body surface, etc. Therefore, in many cases in place of the joint problem of the motion of the 
body and the medium one considers, for simplicity, the motion of a body subject to a force and moment 
computed using local interaction models contained in the known approximate solutions of penetration 
problems or determined empirically [l]. However, in this simplification the solution of the Cauchy 
problem can be obtained only by integrating the system of equations of motion of a rigid body 
numerically, while thle analysis of the stability of the motion as a function of the governing parameters 
and initial conditiorrs is a complex problem. 

Below we use a two-term model of local interactions to compute the pressure on the contact surface 
between the body and the medium. The model contains dynamic term proportional to the square of 
the total velocity of the point on the surface of the body under consideration and a constant term 
characterizing the deformation resistance capacity of the medium. Tangential stresses on the contact 
surface are determined using Coulomb’s model of friction under normal stresses of arbitrary magnitude. 
This enables us to estimate the maximum possible effect of friction on the body dynamics. The 
assumptions that the body of revolution is a slender one and the dynamic term being the dominant one 
in the normal stress model at the initial instant of time are crucial for obtaining an analytic solution of 
the problem and a criterion for the motion to be asymptotically stable, that is valid for arbitrary initial 
values of the special phase variables in a domain corresponding to flow without separation. Bearing in 
mind the effect of friction, stabilizing the result obtained using Coulomb’s model of friction can be 
regarded as an “upper limit” of the boundary of the stability domain for a slender body, while the result 
obtained for a dry coefficient friction of zero can be regarded as a “lower limit”. 

1. THE INTERACTION MODEL. FORCE AND MOMENT 

In the two-term model of local interactions the normal stress on the contact surface between the 
body and the medium is given by 

crn=A(vn)2+C>0, u=u,+[oxr] (1.1) 

Here u, and u are the velocities of the centre of mass and of the body surface at the point under 
consideration, n is the outward unit normal vector to the body surface+4 and C are constant parameters 
of the local model, which depend on the characteristics of the medium according to formulae obtained 
in approximate theories or are experimental constants [l], o is the angular velocity vector of the body 
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having one non-zero component w in the case of plane motion and r is the radius vector drawn from 
the centre of mass of the body to a point on its surface. 

Unlike the motion of a body in a gas, where the main terms of the drag acting on an elementary 
surface element AS of a slender body are given by 4 - q(cJ3 + c )AS (cp and cf are the pressure 
coefficient and the coefficient of friction, p is a number proportiona, to the relative half-thickness of f 
the body if the inclination of the generatrix of the body of revolution varies only slightly, and q is the 
velocity head), where the coefficient of friction can be neglected in many cases, the motion of a body 
in a dense medium in Coulomb’s model of friction on the contact surface, in which case 4 - on@ + 
p)bS (p being the coefficient of friction) is affected by friction, the contribution of which to the resistance 
is of the same order as the pressure and cannot be neglected. Therefore, using (l.l), we can write the 
expressions for the vectors of the force and moment about the centre of mass, which act on the moving 
body as follows: 

F=j/o,(-n+pt)dS (1.2) 

M =I,oi-[rx.l+p[rxtl)ds (1.3) 

tf[[uxn]xn]/j[uxnj] (1.4) 

Here t is a unit tangent vector to the body surface at the point under consideration, and in the general 
case S is the part of the body surface which is currently in contact with the medium. If the range of 
possible modes of motion is not limited and separation between the medium and the surface of the 
body is admitted along some unspecified curve surrounding the domain of integration S = S(X),, a, o), 
where a is the angle of incidence, then the problem of the body dynamics cannot be solved analytically. 
We assume that the whole lateral surface of the body remains in contact with the medium. This imposes 
a restriction on the domain of possible variation of the initial and actual values of u,,,, a and w, which 
must satisfy the inequality 

(u . n) > 0 (1.5) 

when there is no flow separation within the framework of the local interaction model. 
First we need to specify the shape of the body. 

2. A THIN CONE. FORMULATION OF THE PROBLEM 

We introduce two rectangular systems of coordinates with origin at the centre of mass of the body: 
(2, II, z) attached to the body and with the z axis coinciding with the axis of the cone and directed towards 
its vertex, and (u, w, z), the velocity system in which the u axis has the same direction as the vector u,. 
The coordinate planes (7, n) and (u, w) coincide with the plane of motion of the body. The angle of 
incidence a, that is, the angle between the v and z axes, will be assumed positive if the z axis is rotated 
relative to the u axis in an anticloclovise direction. The normal vector n to the surface of the cone with 
ha&angle p at the vertex, the position vector r an the velocity u in (1.1) in the attached system of coordinates 
can be written in the form (below all linear dimensions are relative to the height L of the cone) 

n = (sinp, co@ coscp, co.+ sincpl (2.1) 
r = L (‘5, Rcoscp, Rsincp) (2.2) 

R=(c, -+gp, =[c, -1&], (pE[WA] 

u = {urn cosa-wRLcoscp, -u, sina+oLz, 0) (2.3) 

Here c, is the relative distance between the vertex of the cone and its centre of mass, and (‘t, R, cp) are 
cylindrical coordinates. 

Substituting (2.1) and (2.3) into (1.5), we find that in the plane of variables 

kztgol k,= OL 

tk?P ’ u m sin p co+ cos a (2.4) 
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which depend on the <geometry of the body and on u,,,, 01 and o, the domain of flow past the cone without 
separation is a parallelogram with one pair of opposite vertices lying on the axis ki = 0 (k = 21) and 
the other pair on the straight lines ki = &2 with 

-2 < k, < 0, (c,cos*~-l)k,-l<k<c,cos*&+l 

(2.5) 
OGk,<2, c,cos*pk,-1<k<(c,cos*~-l)~~+1 

Since the problem of the plane motion of a cone is considered in the slender-body approximation 
(/3* Q l), using the co:ndition 1 k 1 G l(2.5) below we shall also neglect the terms a* compared to unity. 
In this approximation., using (2.1)-(2.5) and the differential relation dS = (c,,, - z)&C*dfdtp, we can find 
the vector t (1.4) and also the components of the force vector (1.2) and moment vector (1.3) in the 
attached system of coordinates 

t=(-1, g[coscp+(k-rk,) sin’cp], psincp[l-(k-~~,)coscp]) 

F,= -xB@+p) l+D+$K*(k,k,)+&k:] [ 
F, =~{K[t+~~B(D-l+tKI(~-l+~K*+~k~)]-~~~~} 

M;! = -ML 
I 

z,k + K,,k, + pp 
[( 

2 i 3+2(D-1)z, K+ 
) 

$(l+ D)k, + 

+;; z,K3 + f K*k, -$$-z,)Kk; ++zy)kf)]} 

Here 

(2.6) 

(2.7) 

W3) 

B= Av;L2p3, D=C/(Av:P*), zy =%-c,,, 

K = k + zrk, , K, =1/18+z; (2.9) 

The parameter D characterizes the relative contribution of the deformation and dynamic components 
to the pressure on the body surface (1.1) in translational motion at zero angle of incidence and zY is 
the overall static stability of a cone in a gas in this approximation [2] using the quasisteady interaction 
model (o = 0). In the quasisteady approximation, from (2.7) and (2.8) we can find the overall static 
stability of a cone using the interaction model involving Coulomb friction 

(2.10) 

Expressions (2.6)-(2.8) written in the slender-body approximation can be simplified considerably with 
additional assumptions, which enables us to find an effective solution of the system of equations of motion 
of the rigid body. 

Let Do = D(z)me) = C/(AU~~~*) & 1, which corresponds to the dominant role of the dynamic 
component in the interaction model at the initial instant of time. Note that under this condition one 
can neglect the loss of speech up to the stage when the body completely enters the medium [3]. Omitting 
the estimates, we observe that, with the above assumption, one can eliminate from the equations of 
motion the terms related to gravitation, which are significant only if the term characterizing the 
deformation resistancie capacity of the medium begins to predominate in interaction model (1.1). Thus 
for soils I- 0,2 we shall neglect the terms O(8l.t) in (2.7) and (2.8) compared to unity, which in practice 
does not cause any deterioration in the slender body approximation. By (2.7), (2.8) and the expressions 
for the components FV = F1 - aF,, F, = aFT + F,, of the force vector F in the velocity system of 
coordinates we should have D 1 in the discarded terms in order to preserve the accuracy of the adopted 
approximation. As will1 be seen below, the angular motion of the body about the centre of mass will 
practically disappear before D leaves the range [Da, l] as the velocity decreases. 



976 N. A. Ostapenko and G. Ye. Yakunina 

Using the above simplifications, we can write the system of equations of motion in the form 

v’,, = l+D+;K2+-&k; ELF,, A,=& 
MO PO 

(2.11) 

(2.12) 

&I=-$A,K,K, z+iiIz 
z 

K, =k, -pok, pm =-2, I= 
I, 

KO M,L2 

(2.13) 

k=Vm y-ww K, = l-Z#k, K,=k,-p,k, pa=+ (2.14) 
I 

The dot denotes differentiation with respect to time t. Equations (2.11) and (2.12) describe the motion 
of the centre of mass, and 8 is the angle between the direction of one of the axes of the absolute system 
of coordinates. We can take as this axis the x axis of the right-handed system of coordinates (x, y) 
coinciding, for example, with the free surface of the medium, which occupies the half-space y < 0, 
and the direction of the velocity u, of the centre of mass. Equation (2.13) describes the angular 
motion about the centre of mass, while Eq. (2.14) is a consequence of the kinematic relation h = 
o - band (2.12). In (2.13) zy’ = z,, + 2&t/3, which follows from (2.10) in the adopted approximation. 1, 
is the moment of inertia of the cone about the z axis, and MO and p. are the mass and mean density of 
the cone. 

Using (2.4), (2.11) and (2.14), we change from Eq. (2.13) for & to the equation for kr 

k, =-yxA,[k, -(pa +Ajk;)k] (2.15) 

x=+, Aj=g 
AkX 

Taking into account that the parameterA in the local interaction model is of the same order as the 
density of the medium [l], in accordance with (2.11) we conclude that& - 1 for dense media. Moreover, 
since I - lo-‘, the term& can, in general, be discarded in (2.15) in the slender body approximation 
and for k, kl belonging to the domain (2.5). Later on we shall discuss the effect of this term onto the 
domain of variation of the governing parameters corresponding to stable solutions. 

Therefore, it is necessary to find a solution of the autonomous system of equations (2.11), (2.12), 
(2.14) and (2.15) with initial data 2) mO, Oo, wo, q. The initial conditions must ensure that the initial point 
belongs to the domain defined by (2.5) in the space of (k, kl) and the parameters of the system (2.14), 
(2.15) must give rise to the corresponding trajectory in the same domain passing through the stationary 
point (0,O) [4]. 

3. MOTION ABOUT THE CENTRE OF MASS. STABILITY ANALYSIS 

The right-hand sides of (2.14) and (2.15) contain the same multiplier u,,,, which can be determined 
from (2.11) and can affect only the velocity of motion of a point along a trajectory in the phase space 
(k, kl) [4]. It fohows that within the framework of the local interaction model (1.1) with Coulomb friction 
the stability of the motion of the body in a dense medium when there is no flow separation can be 
investigated in the space (k, k,) independently of the motion of the centre of mass. This is also true 
whe; the slender-body approximation is not employed. It suffices that the terms D = C/[A&in* 

‘~e(~~%$%%!! variable 
can be neglected in the corresponding time interval. 
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(3.1) 

Changing in (2.11), (2.12), (2.14), (2.15) and (3.1) from t to the dimensionless distance s traversed by 
the centre of mass, u.sing the relation ds = u,,#/L, we obtain 

d%i _ ---2u;~*A, 
ds (3.2) 

(3.3) 

(3.5) 

It is convenient to seek the phase-space trajectories of the system of linear homogeneous differential 
equations (3.4) in the (k, kl) plane in the neighbourhood (2.5) of the singular stationary point (0,O) in 
the parametric form 

dk -=- kbl- Pa) 
ti 

CCrl) 9 kl =h (3.6) 

The zeros of the denominator in (3.6) and the roots hi,2 of the secular equation of system (3.4) are 
given by 

711.2=~a[-(x-W6]/2, A=(x-1)*+4xpoIpa (3.7) 

h.2 =A,[-(x+0*&+, 4x2 =&(I-pJp,) (3.8) 

The type of singular point depends on the sign of the discriminant A, and for A > 0 also on the signs 
of the roots of the secular equation and their product. 

lb fix our ideas, we shall consider a thin cone with a uniform mass distribution along 1 starting from 
the vertex. In this case 

x=15& $-zy I( 1 
2 

>l, o<+, 
2 ->zya-; 
3 

(3.9) 

Taking (2.13), (2.14) and (3.9) into account, the curve 

A, = 42; I A (K, - Z)* + 4z,.z;1] (3.10) 

turns out to be the curve corresponding to A = 0 in (3.7) in the plane of the parameters (Ak, zY). 
By (2.13) and (2.14) pa = p. > 0 for 

(3.11) 

The function (3.11) is represented by curve 1 in Fig. 1 Curve 2 in the same figure corresponds to 
A = 0 (3.10) for @.r = 0.03. Curve 3 corresponds to a discontinuity of the second kind ofp, in (2.14). 
The straight line 4 -‘zr = - l/12 corresponds to a homogeneous cone with I= L in (3.9). 
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-0.4’ 
2 4 Ah 

Fig. 1. 

In the general case, for an arbitrary mass distribution inside the cone the only meaningful points (in 
Fig. 1) lie between the dash-dot lines, the upper one corresponding to z,, = 2/3 and the lower one to 
-zr = - l/3. We also observe that the curve A = 0 given by (3.10) must always lie to the left of curve 3, 
where pa and p. have opposite signs. 

The values pa > p. > 0 and A > 0 correspond to the points above curve 1 and below the 
straight line zr = - 2pp/3 (zT= 0, p, = 0) passing through the point of intersection of curve 1 and curve 
2. According to [4], the stationary point (0,O) in the phase plane (k, ki) represents a stable node, since 
h& > 0 and ht < 0, &, c 0 in (3.8). The trajectories of system (3.4) corresponding to this case are 
represented by the solid lines in Fig. 2(a). The directions of motion of points along the trajectories as 
s increases are indicated by arrows. The directions are defined by the signs of the first terms in equations 
(3.4), the zeros of which are represented by dashed straight lines with angular coefficients pa and pw 
The rectilinear trajectories q = q1 and q = r-t2 correspond to the zeros (3.7) of the denominator in 
(3.6). All trajectories, with the exception of the straight line n = Q, are tangent at the stationary point 
on the straight line ki = Qc. For zr = -2pc1/3 (Fig. 1) we havep, = ql = 0, since x > 1 in (3.9), and 
all trajectories, apart from rl = IJ~, will be tangent to the axis ki = 0. 

In the range of values of (Ak, z,,) corresponding to the points above the straight line zr = -2&t/3, 
between curves 2 and 3 (Fig. l), we have pa > 0, p. < 0. The stationary point is a stable node (Fig. 
2b). As 1 -z,& + 0 (‘pa 3 +-) the type of singular point does not change and the rectilinear trajectories 
n = nz coincide with the axis k = 0 (Fig. 2~). In the region of values of (Ak, z,,) corresponding to the 
points above curve 3 (Fig. 1) we havep, < pw < 0, q1 < 0, q2 > 0, hl& > 0, hl < 0, b c 0. Therefore 
in these cases the trajectories form a stable node (Fig. 2d). If we let (Ak, zy) in the domain between 
curves 2 and 3 tend to curve 2 (A = 0), then the trajectories in the phase plane will take the form shown 
in Fig. 2(e), which is the limit form of the pattern of trajectories in Fig. 2(b) as nl + q2. 

When A < 0 in (3.7), which corresponds to points inside the domain bounded by curve 2 (Fig. l), 
the stationary point is a focus with right-handed spiral-shaped trajectories (Fig. 2f). 

If (Ak, z,,) (Fig. 1) tends from above to curve 1, corresponding top, = pw as in (3.11), then we pass 
from the pattern of phase space trajectories presented in Fig. 2(a) to the degenerate case (Fig. 2g) in 
which the curve kl = pak consists of stationary points, that follows from Eqs (3.4). The trajectories are 
straight lines satisfying the differential equation dkJdk = -wa, parallel to.the direction of n2 in (3.7) 
and leading to the stationary line. If (& z,,) lies below curve 1 (Fig. l), then p. > pa > 0 and h,& < 
0 in (3.8). The stationary point for system (3.4) is a saddle. Only two trajectories, namely, the straight 
lines with coefficient ~2 (Fig. 2h), lead towards it in directions opposite to one another. 

Integrating Eqs (3.5) and (3.6), we find 

A>O, s-s,=- (3.12) 
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Fig. 2. 

(3.13) 

(3.14) 
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The variables with zero subscript correspond to the initial state. 
It is not difficult to verify that all the types of trajectories in the neighbourhood of the stationary 

point (0,O) in the phase plane (k, k,) qualitatively described above (Fig. 2) are contained in the resulting 
solution. In particular, the passage from a nodal point to a saddle point in (3.12) occurs when the sign 
of y changes from plus to minus. The variable u varies in accordance with its dependence on rl and the 
direction of motion of a point along a trajectory depending on the values ofp, andp, the initial point 
(ko, qo) and the position of the ray t-lo relative-to the directions ql, q2. Nevertheless, in all cases 1 u 1 
-+Oasq +qi. 

We will now consider the effect of the term with coefficient Aj on the right-hand side of (2.15), which 
has not been taken into account in the above analysis. Without studying the curves corresponding to 
the zeros of the expression in square brackets in (2.15), we will only indicate that, apart from (0,O) for 
Aj # 0, the points with coordinates 

(3.15) 

are the common zeros of the right-hand sides in (2.14) and (2.15). As can be seen from (3.15), the system 
of differential equations (2.14) and (2.15) has two more singular points ifp, > po, which, according to 
Fig. 2, can only happen when pa > 0. It is easy to verify that these are saddle points. Trajectories 
corresponding to the casep, > p. > 0 with two saddle points S are qualitatively presented in Fig. 2(i). 
These singular points must be taken into account in cases when the governing parameters and initial 
conditions allow them to fall into the domain (2.5) of flow past the cone without separation. 

We shall find a condition under which the saddle points S (Fig. 2i) do not belong to the domain (2.5) 
which we define by the stronger inequalities 

I+ 1, I&l<2 (3.16) 

for simplicity. The expression under the root sign in (3.15) can be represented as 

Pa-Pm _ 
-- P,Q 

Ai 
(3.17) 

Obviously, in order that the points (3.15) should not fall into the domain (3.16) it suffices to require 
that the following system of inequalities is satisfied for pa 2 2 in (2.14) and pa < 2, respectively 

pas 2, PaQ > 4 

Pa < 29 Q/Pa > 1 

Both systems of inequalities can be replaced by the stronger condition Q > 2, which we can write in 
the form 

zy ‘f(A,)+W2 U~-#BPA,) 

taking (3.17) and (3.11) into account. 

(3.18) 

Using the expressions for I in (3.9) and f&) in (3.11), we can conclude that for Ak - 1, which 
corresponds to a wide range of ratios of the density of the medium and the mean density of the body, 
the second term in (3.18) is negligibly small. It only becomes important for small values of Ak. Thus, 
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in the case of a cone moving in the air, when Ak - 10m3 and I_L = 0, the second term in (3.18) has at 
least the same order as f(Ak) and must be taken into account. 

The analysis carried out above implies the important qualitative result that for the motion of a slender 
cone without separation in a dense medium, which includes various types of soil, within the framework 
of the local interaction model (1.1) the requirement for overall static stability is much relaxed, while 
for stable motion in the air a positive overall static stability (3.18) is needed, in general. 

Thus, for Do 4 1 and D 1 the motion of a slender cone in a dense medium will certainly be stable 
if the governing parameters ensure that the point (Ak, z,,) in the plane (Fig. 1) lies above curve 1, (3.18), 
and the whole trajectory in the phase plane (k, ki) lies in the domain (2.5) of flow without separation. 
The motion of a body about the centre of mass for D > 1 will be discussed below. 

4. THE MOTION OF THE CENTRE OF MASS 

In Section 2 we assumed that Do 4 1 and D d 1 in some time interval. This enabled us to ignore the 
terms in (2.12)-(2.14) of order O(p*D) and O@pD) compared to unity and to obtain solution 
(3.12)-(3.14) for the motion of a body about the centre of mass. In the same characteristic time interval 
the general solution of Eq. (3.3) for the angle 6 governing the direction of the velocity of the centre of 
mass in the stationary system of coordinates can be written using (3.5), (3.12)-(3.14) as follows: 

A’o7 e-eo=(l-uo)J;i y kop [L~2~4-cx,‘]- 
l+Y 

, K,(17)=1+571 

A=O, 8-8, = $$ {K2(rlo)ll -exp(-y&l+ 

+~K2(ll)(‘lo-~,)[l-(I+~~I)exp(-y,S)1 

A<O, O-8,=- koP =P, 
~xcoscpo (Pfl -Pa> 

1% (cp) - 0, (CPON 

(4-l) 

(4.2) 

(4.3) 

@I (0) = K2(p,)sincp+Y2[K2(P,)- ~~,(p,--~~)lcw 
1+X 

The variables u, 5 and cp in (4.1)-(4.3) are defined in (3.12)-(3.14). 
Note that by (3.3) the trajectory of motion of the centre of mass will be a straight line: 8 = e. if IJ = 

-l/.+ This can be so only in those cases when the corresponding ray coincides with the rectilinear trajec- 
tories in the phase plane, i.e. ql, 2 = -l/z,, (A 2 0). An analysis indicates that this type of motion of the 
centre of mass will occur in the case of a cone with a special mass distribution over the volume (3.9) for 

A,=6 t-z1 ( 1 
2 

/[5(1- 12puz)J ZJ 

The corresponding function is represented by the segments of curve 5 in Fig. 1, just like curve 2, for 
l3p = 0.03. On the segment issuing from (0,2/3) the rectilinear trajectory of the centre of mass will be 
realized for rlo = Q = -l/z,,. On the second segment of curve 5 it will be realized for no = nl = -1/4y. 

We consider Eq. (3.2) for the modulus of the velocity of the centre of mass. Suppose that D 4 1 m 
some time interval. Then the general solution of Eq. (3.2), taking (3.5) and (3.12)-(3.14) into account, 
has the form 

A>O, v,,,=v,~ (4.4) 
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4 (5) = -&lo -%I 
2 1 

4Yl ( 
2 KoTI:+u~~ +a, 

> 
[1+(1+27,~)21+ 

++a -~r)[Korh,~rll +a,(llo+~,)+2a,1(1+27,5)+ 
I 

+ 

A<O, V, =v,,exp 

(4.5) 

(4.6) 

R3tcp) = 
a6 A 
---[[a,(72cos2(jI+sin2cp)+ 
72 (1+7,) 

+a,(72 sin 2g - cos 2(p)]} exp[272 (9 - 90 )I 

We shall determine u = u1 (A > 0) in (3.12) when D and the sum of the remaining variable terms in 
the square brackets in (3.2) have the same value. Using (3.12) and (4.4), we obtain 

From (4.7) we find that for 7 S 73 or, which is the same thing, for 

(4.7) 

(4.8) 

the order of the right-hand side of (4.7) is defined by the factor (u&,-J~, since ( u 1 + 0 and the order 
of magnitude of the argument of the exponent does not exceed y3. This has an important consequence. 
If the governing parameters of the problem are such that (Ak, zY) does not belong to a small neighbourhood 
over the curve 5 = fcAk) given by (3.11) (curve 1 in Fig. 1) on which the degenerate case of motion about 
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the centre of mass is realized (Fig. 2g), then u,~/u,~ remains of the order of unity until D and the sum 
of the remaining variable terms in the square brackets in (3.2) become equal. In the principal approxima- 
tion we can find u1 from (4.7) and the corresponding values of u,i and st from (4.4) and (3.12). We obtain 

ti=l+vln 3 
lJ 

[1+0[j3(/3+~)lnDo11 
m0 (1 UO 

(4.9) 

I 
SI -se = - - In 

( 1 
.!L 

A& u, 

Hence if condition (4.8) is satisfied, then for u c u1 in (4.9) the terms on the right-hand side of (3.2), 
related to the motilon of the body about the centre of mass, make a contribution to slowing down the 
body, the order of magnitude of which does not exceed O(Do), so they can be discarded. Starting from 
the given instant of time the velocity of the body can be determined from the equation 

with the initial condition u,,, = uml determined from (4.9). 
By a similar argument using (3.13), (4.5) and (3.14), (4.6) we can find g1 and cpl, respectively 

A=O, 5, bL.,n_ 200 
~YI ri 

1 
In 2Do 

s’-so=- Ak(l+x) ri 

A<% VI-‘PO L-+- 200 

2Y2 ri 

(4.10) 

(4.11) 

(4.12) 

In the case A < 0 (4.12) the expression for s1 -so has the same form as for A = 0 (4.11). 
Thus, it has been shown that for s Z+ st the velocity of the centre of mass satisfies differential equation 

(4.10) with the assumed accuracy. The solution of this equation can be written as 

s-q = (4.13) 

Whereas solution (4.4)-(4.6) for u, holds by (4.9), (4.11) and (4.12) when 0 < s - SO G s1 - so - 
-1n Do, the solutions (3.12)-(3.14) for k and r and (4.1)-(4.3) for 8 have the necessary accuracy when 
D s 1. We also observe that rl - rodDo when s1 - so - -1n Do. 

We shah tind the order of r for D = 1, which is equivalent to (u,,,&,,~)~ = Do. From (4.13) we can 
determine the distance travelled by the centre of mass during the time in which the velocity decreases 
from u,,,~ to u,,,~. We have 

s2 -‘I = 2p(S+i.t) A, l +[l+i-(g]] 
(4.14) 
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Using (4.9), (4.11), (4.12) and (4.14), we obtain an estimate for s2 - SO 

A>O, s2-so =- 
1 

In%+ 
(1+x-&)A, ri 

+2&)A, ln[i[l+i$i$)j-- 2$:;)a, 
(4.15) 

AGO, sz-so=- 
1 

In 2Do -+s2-s, -- 
In Do 

(l+x)A, ri 2P(P + P) A, 

Taking (4.15) into account, for s = s2 we find an estimate of the distance r in (3.12)-(3.14) between 
a point on the phase space trajectory and the stationary point 

A>O, r-ro(Q-,)Y4r Y4=* (4.16) 

ASS 0, r - ro(Do)y5~ YS = 1+x 

4P(P + P) 

By (4.16) and (4.8) one can conclude that the motion about the centre of mass will have practically 
ceased when s = s2. However, as the body is further slowed down, it may turn out that the terms 
containing D which were discarded in (2.12)-(2.15) tend to infinity faster than k and kl tend to zero. 
Under such conditions the right-hand sides of the equations of motion about the centre of mass (3.4) 
will increase without limit, which leads to the destruction of the “steady” motion at the final stage of 
slowing down, I_+,,&~ -c -E &s. The term in the local interaction model that characterizes the deformation 
resistance capacity of the medium will be responsible for this. 

The analysis shows that when relations (3.12), (4.9), (4.13), (4.14) and (4.16) are taken into account, 
destruction of motion can only occur if the condition 

is satisfied. It follows that destruction of motion can only occur in a small neighbourhood of the 
degenerate case of motion (Fig. 2g), which corresponds to curve 1 in Fig. 1, and it can have two 
characteristic types. The first one occurs when the motion about the centre of mass will begin to “grow” 
after having ceased, and the second one, when, having approached some asymptotes, k and kl (Fig. 2g) 
will begin to move away from them for D > 1. 

Substitutings2 -so from (4.15) into relations (4.1)-(4.3) for 8 and using (3.12)-(3.14), we can verify 
that the terms responsible for the variation of the angle of inclination of the trajectory are beyond the 
order. It follows that for s > s2 the centre of mass of the cone moves along a straight line whose angle 
of inclination is given by 

kOP A’o, -o=m y [ ~K,(lJ,)-3- 
l+Y 

K2 (712 1 1 
A<O, f3-flO= 

(4.17) 

‘~0 + ~2 cos ~po ) K2 (Pa ) - 2Y2X 
-Zz,(Pa-Pu)coscPO 
1+x 
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5. CONCLUSIONS AND REMARKS 

Summarizing the above investigation of the dynamics of a slender rigid body of revolution with a 
weakly varying inclination of the longitudinal contour (cone) in a dense medium, given that there is 
no flow separation, we should first observe that the asymptotic behaviour of a slender body within the 
framework of the local interaction model, taking into account the effect of angular velocity of rotation 
and Coulomb frictio’n with a dynamic pressure component on the contact surface, significantly exceeding 
the deformation resistance capacity of the medium at the initial instant of time enabled us to reduce 
the problem to a separate analysis of the motion of the body about the centre of mass in special phase- 
space variables, and on this basis, to an analysis of the motion of the centre of mass. 

It is important that within the framework of the given interaction model the domain of variation of 
the governing paralmeters with asymptotically stable motion of the body contains a subdomain with 
negative values of the overall static stability, which is not the case for motion in a gas. In particular, a 
statically unstable slender cone with uniform mass distribution over its volume (z,, = -l/12, straight line 
4 in Fig. 1) can move in a stable way in a dense medium when Ak B 1 in (2.11). 

The results obtained cast doubt on the existing belief that the motion of a slender body in a dense 
medium is unstable, which is based on experimental data which depend at least on the following factors: 
the conditions under which the body approaches the boundary of a dense medium, which define the 
initial parameters of motion when the body is fully immersed in the medium, the presence of isotropy 
in the medium and the tensile strength of the body. Finally, according to the analysis carried out in 
Section 4, disorganization of the body motion, which is in fact asymptotically stable, can occur at the 
final stage if kD and (or) klD + 00 as u, + 0. 

The results obtained enabled us to establish that the stable motion of a slender body can be separated 
into three characteristic stages. The first stage, which we shall call the transient regime, occurs when 
ss~s~si(si-ss -- -In Do), the velocity of the body varies only slightly, the motion about the centre 
of mass is essentially damped (1 3 r/r0 B dDo), and the principal angle of inclination of the trajectory 
of the centre of mass ceases to vary (p B 1 de/u5 1 B pl(oo). 

In the second stage, called the regular regime, which occurs when s1 G s G s2, (s2 - s1 - -In D,,/ 
[2 
( $ 

(p + p) Ak]) the body covers the longest distance, its motion about the centre of mass subsides 
DO B rho b 0), a:nd the angle of inclination of the trajectory approaches the asymptote (0 dDo B 

1 dCVds 1 B 0). 
During the third and final stage, called the rectilinear regime, which occurs when s2 G s G s3 (s3 - s2 

- In 2/[2g(g + l.t) Ak]) when the deformation resistance capacity of the medium exceeds the dynamic 
component in the interaction model, the body covers the second longest distance without moving about 
the centre of mass, moving along a rectilinear trajectory until it comes to rest or enters a terminal stage 
in which the stable motion is disrupted. 

The trajectory of the centre of mass is given by 
s 

x=xo+L] cos8ds, y=yo+Lj sin8ds 
Y, So 

The solution obtained can be used both in the case of stable and unstable trajectories in the phase 
plane (Fig. 2) as 1on.g as (k, ki) lies in the domain (2.5) of flow without separation. 
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